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Abstract

We extend the Horn-Schunck model of 
ow �eld
computation to incorporate incompressibility for
tracking 
uid motion. This is expressed as a zero-
divergence constraint in the variational problem
and implemented with a mutigrid approach for
e�cient computation. Additionally, we show ef-
fective detection and tracking of singular events,
such as vortices and saddle points, from the ve-
locity �eld. We have applied our approach to 12
years of AVHRR data at 18 Km resolution and
tabulated a feature database for data mining. Our
analysis indicates preferred localization of singu-
lar events over long time scales.

1 Introduction

Current environmental satellites provide oceano-
graphic images with di�erent types of physical
measurements. In this paper, we focus on sea sur-
face temperature (SST) data. These data are col-
lected using AVHRR satellite sensors, then down-
linked to the University of Miami for automatic
calibration and computation of geophysical �elds
by combining the satellite swath data. It is highly
desirable to represent a massive amount of SST
data for abstraction and subsequent data min-
ing. One possible abstraction relies on local-
ization of vortices and saddle points from fea-
ture velocities. Ocean vortices are an important
component of global circulation because they are
an e�cient transport and mixing mechanism for
salt/freshwater, heat, plankton communities, and
nutrients. Saddle points are nonlinear points that
are essentially chaotic events. We will show that
these points exist in the ocean and that they can
be detected and tracked from SST data. Fur-
thermore, from an informatic point of view, an
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abstraction based on vortices and saddle points
provides a compact representation of underlying
feature velocities. Our method is e�cient, robust,
and has been tested on real data. Such a feature-
based representation provides the enabling frame-
work for subsequent climate trend analysis, the
study of ocean variability, and data mining. More-
over, such an abstraction provides the basis for
comparative studies between simulation and ob-
servational data. Detection of vortices and saddle
points relies on computing feature velocity. Here,
we introduce a novel formulation of 
ow �eld com-
putation that incorporates an incompressibility
constraint for tracking 
uid motion. The pro-
posed technique is then implemented through a
multigrid representation to reduce the computa-
tional complexity.
In Section 2, we review previous work in 
ow

�eld computation. Section 3 provides the details
of our approach, including 
ow computation, fea-
ture detection, statistical analysis using feature
database, and experimental results on real data.
Section 4 concludes the paper.

2 Previous Work

Measurement and analysis of feature velocities is
often referred to computation of optical 
ow in
the imaging literature. Review and enhancement
of these techniques can be found in [3, 7]. Re-
cent e�orts have focused on de�ning a set of ba-
sis functions for recovery of smooth motion [4].
In this approach, the motion �eld discontinuity is
expressed as a linear combination of a small num-
ber of the basis motions. The emphasis is toward
a parameterized model of motion for explanation
and estimation. The approach is noniterative and
thus adequate for real-time processing. Cohen
and Herlin [5] proposed a nonquadratic regular-
ization technique for solving the optical 
ow con-
straint equation and applied it to oceanographic
images. The approach is applicable to irregularly
spaced images with missing data. The regular-
ization problem was solved by �nite di�erence
method with �ner tessellation near the motion
boundary. Amini [1] extended Schunck's equation



to include 
uid X-ray images of contrast velocity
in arteries. This was expressed in terms of zero
divergence of 
ow �eld to simplify the solution.
His method applies to X-ray images, but it can-
not be used to compute motion in SST images due
to its computational complexity. Another draw-
back of his approach is that the corresponding
partial di�erential equation is of a higher order.
Oceanic satellite images (or those generated from
high resolution simulation models) have unique
physical constraints in terms of 
uid incompress-
ibility. Additionally, because the data resides in
the spherical coordinate system, it requires spe-
cial treatment. Our formulation does not require
solution of higher order PDEs, and it has been
implemented in a multigrid framework for better
computational e�ciency. Feature extraction from

ow �eld measurements often relies on eigenvalue
analysis from the local Jacobian. We will present
an elegant approach for detection of vortices and
saddle points that has proved to work e�ectively
in our data sets.

3 Approach

In this section, we will describe a set of algorithms
to compute feature velocities from consecutive im-
ages of sea surface temperature data and to lo-
calize singular events (saddle points and vortices)
from velocity vectors.

3.1 Computation of feature veloci-
ties

Let I(x; y; t) be the image at time t, with (u; v) as
the velocity vector at each point. The 
ow �eld
equation with brightness constancy assumption is
given by:

dI(x; y; t)

dt
= Ixu+ Iyv + It = 0 (1)

where the subscripts x, y, and t represent the par-
tial derivatives. Horn and Schunck [6] constrained
the problem by incorporating local smoothness in
the 
ow. This is given by:

(u�; v�) = argminE :=
R R

(Ixu+ Iyv + It)
2

+�(jruj2 + jrvj2)dxdy

where � is the weighting factor of the smooth-
ness term. Note that spherical coordinates should
be used in this equation. We will discuss the
problem of coordinate transformation later. The
velocity vector due to (incompressible) 
uid mo-
tion has to have zero divergence at each point:
ux + vy = �wz Since w is di�cult to estimate,
the above constraint is applied in a weak sense,
e.g., ux + vy = 0. In this context, incompress-
ibility is enforced along the temperature-gradient
(normal to iso-thermals). A vector �eld with zero-
divergence does not contain sinks and sources.

This constraint is expressed as a penalty term
in the energy functional:

(u��; v
�

�) = argminE := 1
2

R R
[(Ixu+ Iyv + It)

2

+�(jruj2 + jrvj2) + �(ux + vy)
2]dxdy

The Euler-Lagrange equation of this equation is
�Ix(Ixu+Iyv+It)+(�+�)uxx+�uyy+�vxy = 0
�Iy(Ixu+Iyv+It)+�vxx+(�+�)vyy+�uxy = 0
which can be solved using �nite di�erence approx-
imation. The algorithm is iterative and converges
to a local minimum solution, satisfying smooth-
ness and zero-divergence constraint.
The solution to the above equations is achieved

through multigrid technique to reduce the com-
putational complexity. Let h be the window size
where �nite di�erences are computed. Then by
setting h = 2K ; 2K�1; � � � ; 1 successively, we can
propagate from coarse to �ne grid through simple
linear interpolation and re�nement.

3.2 Evaluation of feature velocities

Both � and � of the regularization parameters
are important for accurate measurement of feature
velocities. There is a big di�erence between S2

and R2 in that their topological structures are not
homomorphic. With respect to the quality of our
measurements, we have compared our results to
prior literature (Nov. 5, 1986 to Nov 18, 1997,
Aoki et al. [2]) that indicates a motion �eld of 3-
5cm/sec to the west from 35 to 40 N in the region
30 to 40�N and 140� E to 170� W. Our results for
the same years indicate similar feature velocity in
those regions, thus validating our measurements.

3.3 Detection of vortices and saddle
points

Singularities in the 
ow �eld can provide a com-
pact abstraction in the velocity �eld. This issue
has been addressed in literature [8], where an algo-
rithm based on the analysis of local Jacobian was
proposed. Their approach is complex due to the
fact that the 
ow �eld is not regularized. Here, we
propose an alternative method for robust estima-
tion of event detection and subsequent tracking of
singularities.
Let F = (u; v) be a vector �eld and J be a

Jordan curve with no critical point on it. The
index of J is de�ned by

Index(J) =
1

2�

I
J

udv � vdu

u2 + v2

At each point P , we choose a small circle JP
around P and compute Index(JP ). The 
ow �eld
(u; v) can then be classi�ed according to:

1. The index of a vortex is equal to +1 (the classi�-
cation of singular points in a vector �eld is given
in [8]), and



2. The index of a saddle point is equal to �1.

There is no node in the vector �eld because of
the zero-divergence constraint, but singularities
do occur. Recall that a point (x; y) is singular i�
u(x; y) = 0 and v(x; y) = 0. However, using this
condition to localize singularities leads to compu-
tational instability. A better approach is to ex-
ploit the inherent local minimum velocity volume
to simplify the problem. Thus,

� Step 1: Find all local minima of the velocity �eld,

i.e.,
p

u(x; y)2 + v(x; y)2

� Step 2: 8(x; y) 2 S:

(1) Let R = 1
2
maxfrjS

T
Jr(x;y) = �g where

Jr(x;y) is the circle centered at (x;y) with radius
r.
(2) Compute the index of JR(x;y), that is,

Index(JR(x;y)) =
1

2�

I
JR
(x;y)

udv� vdu

u2 + v2

(3) If Index(JR(x;y)) = 0, then (x;y) is not singu-

lar; if Index(JR(x;y)) = 1, then (x;y) is a vortex; if

Index(JR(x;y)) = �1, then (x; y) is a saddle point.

One important characteristic of vortex is its
\size." Here, we propose a simple de�nition. If
a point a (x; y) is a vortex, then its size R�(x; y)
can be de�ned as:

R�(x; y) = maxfRjIndex(JR(x;y)) = 1g

that is to say, R�(x; y) is the largest R such that
the index of JR

(x;y)
remains 1. Fig. 1 shows the

feature velocities (date: the 200th day of the year
1992) corresponding to a pair of SST data. See
the captions for more detail.

3.4 Analysis

We have processed SST data, at 18 Km resolu-
tion, from 1986 to 1998 to create a database for
trend analysis and data mining. Each singular
event is represented with a number of attributes
that include year, season, date, spatial location,
size, event type, temperature, wind vector, and
precipitation. We have constructed seasonal and
interannual probability density functions that rate
the occurrences of vortices and saddle points. Ta-
ble 1 shows the number of events in each season
and year from 1986 to 1998.
Figure 2 shows preferred occurrences of events

for a 12-year period (2190 images). The results
clearly indicate preferred occurrences of events
along the equator, Gulf Stream and to the north
of it, and 40� S. These areas are the East Pa-
ci�c instability region, the Gulf Stream vortices,
the meander region, and the subpolar front of the
Southern Oceans.

Figure 1: Feature velocities and computed vortices
from SST: Feature directions are shown with arrows,
and their corresponding magnitudes are shown with
the underlying brightness map. Vortices are sur-
rounded with a blue circle. This result is generated
from a pair of consecutive images around day 200 from
1992.



Year Winter Spring Summer Fall
1986 5194 3991 5126 4425
1987 4970 3881 5382 4455
1988 5119 3991 5241 4854
1989 5051 4303 5060 4230
1990 4933 4183 5298 4470
1991 5166 4133 5542 4870
1992 5254 4273 5446 4617
1993 4988 4043 5247 4171
1994 5057 3942 5071 3380
1995 5109 4212 5089 4419
1996 5283 4090 5210 4847
1997 5422 4280 5278 4519
1998 5095 4074 5133 4534

Table 1: Number of events (vortices and saddle
points) in each season and each year of SST data.
Each event is represented with its date, location,
size, and temperature in the database. It is also
cross referenced with other �elds for precipitation
and wind stress measurements.

(a)

(b)

Figure 2: Frequency of occurrence of vortices and
saddle points, shown at 1� resolution, from 1986 to
1998: (a) One view of all events; (b) PDF correspond-
ing to the local maxima of each year accumulated over
the 12 year period.

4 Conclusions

In this paper, we formulated motion computation
in oceanographic images as a constrained varia-
tional problem with incompressibility constraint,
which is generalization of Horn-Schunck's original
work. A robust technique for detection of singu-
larities (vortices and saddle points) in the veloc-
ity �eld was proposed, implemented, and shown
on real data. The techniques were applied to 12
years of SST data. We have shown that singular
events have a prefered localization and frequency
of occurrence throughout the data. These include
40� S, Gulf Stream, and instability regions in the
paci�c.
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